I. Speech Pattern Comparison using Dynamic Time Alignment

Global constraint

The global range of time-warping paths can be derived from local continuity constraints or local path patterns and for reducing search space.

Example

\[P_1 \rightarrow (2, 1) \]
\[P_2 \rightarrow (1, 1) \]
\[P_3 \rightarrow (1, 2) \]
Global range
Slope weighting

Assign weight to different path patterns to encourage or discourage certain types of moves

Example
DTW Solutions

Definitions

- $\phi = (\phi_x, \phi_y)$ \sim warping path
- $m(k)$ \sim slope weight
- $M_\phi = \sum_{k=1}^{T} m(k)$ \sim normalization factor
- $d(\phi_x(k), \phi_y(k)) = d(x_{\phi_x(k)}, y_{\phi_y(k)})$ \sim local distance
- $D(i_x, i_y)$ \sim cumulative distance of the optimal path ending at (i_x, i_y)

Distance between templates X and Y:

$$d(X, Y) = D(T_x, T_y) = \min_{(\phi_x, \phi_y)} \frac{1}{M_\phi} \sum_{k=1}^{T} d(\phi_x(k), \phi_y(k))m(k)$$
DTW recursion procedure

Example

Initialization: \(D(1, 1) = 2d(1, 1) \)

Recursion:

\[
D(i_x, i_y) = \min \left\{ \begin{array}{l}
D(i_x - 1, i_y) + d(i_x, i_y) \\
D(i_x, i_y - 1) + 2d(i_x, i_y) \\
D(i_x, i_y - 1) + d(i_x, i_y)
\end{array} \right.
\]

with \((i_x, i_y)\) cover the global search range

Termination: \(D(X, Y) = \frac{1}{M_x} D(T_x, T_y) \)
Example

Initialization: \(D(1, 1) = d(1, 1) \)

Recursion:

\[
D(\hat{i}_x, \hat{i}_y) = \min \left\{\begin{array}{l}
D(\hat{i}_x - 2, \hat{i}_y - 1) + \frac{1}{2} (d(\hat{i}_x - 1, \hat{i}_y) + d(\hat{i}_x, \hat{i}_y)) \\
D(\hat{i}_x - 1, \hat{i}_y - 1) + d(\hat{i}_x, \hat{i}_y) \\
D(\hat{i}_x - 1, \hat{i}_y - 2) + \frac{1}{2} (d(\hat{i}_x, \hat{i}_y - 1) + d(\hat{i}_x, \hat{i}_y)) \\
\end{array}\right. \\
\text{with } (\hat{i}_x, \hat{i}_y) \text{ cover the global search range}
\]

Termination: \(D(X, Y) = \frac{1}{M_b} D(T_x, T_y) \)
Multiple Template Training Using DTW

Issue: how to derive representative reference templates from a set of training tokens of a given word?

Casual training:

Use each training token as a reference template, suitable for speaker-dependent tasks.

Clustering:

Derive a small set of representative reference templates from a large set of training tokens using a certain clustering criterion.

Modified K-means algorithm for template clustering

For each given word, denote the set of training tokens as $\Omega = \{X_1, X_2, \ldots, X_L\}$.
Distance between tokens

\[d_{ij} = \frac{1}{2}[d(X_i, X_j) + d(X_j, X_i)] \]

Clustering objective

Partition the training set \(\Omega \) into \(N \) disjoint clusters \(\Omega_i \), i.e.,

\[\Omega = \bigcup_{i=1}^{N} \Omega_i \], within each \(\Omega_i \) the tokens are similar.

Cluster center

Minimax center:

Consider the cluster \(\Omega_k \). For a token \(X_i \in \Omega_k \), its largest distance to other tokens \(X_j \in \Omega_k \) is \(\max_{j \in \Omega_k} d_{ij} \).

The minimax center of \(\Omega_k \) is defined as \(X_{i^*} \in \Omega_k \), with

\[i^* = \arg \min_{i \in \Omega_k} \left\{ \max_{j \in \Omega_k} d_{ij} \right\} \]
Average center:
Use DTW to time-align all the tokens \(X_i \in \Omega_k \) to the minimax center \(X^{*}_k \in \Omega_k \).
Average the time-normalized tokens to obtain the center \(\bar{X}^{(k)} \).

The training procedure:
The procedure iterates to find an increasing number of clusters \(j = 1, 2, \ldots, J_{max} \).
For each fixed \(j \), a K-means clustering is performed.
Define \(\omega^{k}_{j,i} \) as the \(i \)th cluster in the \(k \)th iteration when the total cluster is \(j \), and \(y \left(\omega^{k}_{j,i} \right) \) as its cluster center.
• Step-5
 If $j = j_{\text{max}}$, stop, otherwise go to Step-6.

• Step-6 Cluster splitting
 Select the least compact cluster $\omega_{j,i}^{k+1}$ and split it into two clusters
 $$i^* = \arg \max_i \left(\frac{\Delta_{j,i}^{k+1}}{|\omega_{j,i}^{k+1}|} \right)$$

 The split cluster centers are chosen as the most distant pair of tokens X_m and X_l in $\omega_{j,i}^{k+1}$, i.e.,
 $$d_{m,l} > d_{p,q} \quad (m,l) \neq (p,q)$$

 Set $j = j + 1$, $k = 1$, go back to Step-2.
Figure 5.11 A flow diagram of the MKM clustering procedure (after Wilpon and Rabiner [7]).
Recognition using multiple template

Use K-nearest neighbor rule:

For word m, $1 \leq m \leq M$, sort the template distances as

$$d_{m(1)}^{m} \leq d_{m(2)}^{m} \leq \ldots \leq d_{m(N)}^{m}$$

Compute the average distance as

$$d_{m} = \frac{1}{K} \sum_{k=1}^{K} d_{m(k)}^{m}$$

Classify test template X as the word m^* with

$$m^* = \arg \min_{1 \leq m \leq M} d_{m}$$
• Step-1 Initialization
 set \(j = 1, i = 1, k = 1, \omega_{1,1}^1 \).
• Step-2 Nearest neighbor assignment
 — Assign each token to a cluster \(\omega_{j,i}^k \) based on minimum
 token-center distance
 — Accumulate the intracluster distance \(\Delta_{j,i}^k \)
• Step-3 Update cluster centers \(y(\omega_{j,i}^{k+1}) \), \(1 \leq i \leq j \)
• Step-4 K-means convergence check
 If
 — \(y(\omega_{j,i}^{k+1}) = y(\omega_{j,i}^k) \), \(1 \leq i \leq j \), or
 — \(k = k_{max} \), or
 — \(\left(\sum_{i=1}^{j} \Delta_{j,i}^k - \sum_{i=1}^{j} \Delta_{j,i}^{k+1} \right) / \sum_{i=1}^{j} \Delta_{j,i}^k < \text{threshold} \)
 — then go to Step-5,
 otherwise set \(k = k + 1 \) and go back to step-2.